Learning to Estimate Two Dense Depths
from LIDAR and Event Data
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Traditional camera output:

Event cameras are emerging sensors A
which only react to brightness 000
changes, and output them as a fully a4
asynchronous stream of data. They Fvent camera output:
offer many advantages: high
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dynamic range, low latency, and no A % 7 > Noevent
motion blur / "

LIDAR sensors provide accurate but sparse
3D information about their surrounding
environment. While they are a key
component for autonomous navigation,
their sparsity often constitutes a limiting
factor

Motivation and Goals

- Main objective: fusing asynchronous LIDAR and event data to estimate dense depth maps
= By definition, events represent a change in illumination = They might also represent a change of depth = Estimating a single depth per event is erroneous
= Our solution: computing two dense depth maps at each time step, one before the events (Dyy), and one after the events (D)

Our Asynchronous LiDAR and Events Depths (ALED) Densification Network
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Our Synthetic LiDAR Events Depths (SLED) Dataset Results on our SLED Dataset

= Only one dataset available: MVSEC [1]

= [ ow-resolution (346x260)
= Approximate ground truth (no synchronization, errors for moving objects)

= SLED is a novel synthetic dataset, recorded in CARLA [2]
= High-resolution (1280x720)
» Perfect ground truth
= ~30 minutes of data, recorded in a wide range of environments (urban, suburban, highway, countryside) and
of atmospheric conditions (day/night, sunny/overcast)

a) Events input b) LIDAR input c) ALED (ours) d) Ground truth

Results on the MVSEC Dataset
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