

Learning to Estimate Two Dense Depths from LiDAR and Event Data

Vincent Brebion Julien Moreau Franck Davoine

Heudiasyc Lab, CNRS, Université de technologie de Compiègne (UTC), France *firstname.lastname*@hds.utc.fr

LiDAR sensors provide accurate but sparse 3D information about their surrounding environment. While they are a key component for autonomous navigation, their sparsity often constitutes a limiting factor

Event cameras are emerging sensors which only react to brightness changes, and output them as a fully asynchronous stream of data. They offer many advantages: high dynamic range, low latency, and no motion blur

Motivation and Goals

- Main objective: fusing asynchronous LiDAR and event data to estimate dense depth maps
- By definition, events represent a change in illumination \Rightarrow They might also represent a change of depth \Rightarrow Estimating a single depth per event is erroneous

Our Synthetic LiDAR Events Depths (SLED) Dataset

Only one dataset available: MVSEC [1]
Low-resolution (346×260)
Approximate ground truth (no synchronization, errors for moving objects)

Results on our SLED Dataset

- SLED is a novel synthetic dataset, recorded in CARLA [2]
 - High-resolution (1280×720)
 - Perfect ground truth
 - ~30 minutes of data, recorded in a wide range of environments (urban, suburban, highway, countryside) and of atmospheric conditions (day/night, sunny/overcast)

References

- [1] Alex Zihao Zhu, Dinesh Thakur, Tolga Özaslan, Bernd Pfrommer, Vijay R. Kumar, and Kostas Daniilidis. The multivehicle stereo event camera dataset: An event camera dataset for 3D perception. IEEE Robotics and Automation Letters, 3:2032–2039, 2018.
- [2] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, Antonio López, and Vladlen Koltun. CARLA: An open urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning, pages 1–16, 2017.
- [3] Daniel Gehrig, Michelle Rüegg, Mathias Gehrig, Javier Hidalgo-Carrió, and Davide Scaramuzza. Combining events and frames using recurrent asynchronous multimodal networks for monocular depth prediction.

Results on the MVSEC D	Dataset
------------------------	---------

Recording	Cutoff	Event- and fra RAMNet [3]	ame-based E√T+ [4]	LiDAR- and ev Cui et al. [5]	ent-based ALED
Outdoor day 1	10m	1.39	1.27	<u>1.24</u>	0.50
	30m	2.76	<u>2.37</u>	4.87	1.02
	100m	-	-	-	1.60
Outdoor night 1	10m	2.50	1.48	2.26	<u>1.52</u>
	30m	3.82	<u>2.84</u>	4.50	1.95
	100m	-	-	-	2.54
Outdoor night 2	10m	<u>1.21</u>	1.48	1.88	1.09
	30m	3.28	<u>2.92</u>	4.67	1.64
	100m	-	-	-	1.97
Outdoor night 3	10m	<u>1.01</u>	1.40	1.78	0.81
	30m	3.43	<u>2.79</u>	4.55	1.33
	100m	-	-	-	1.66

IEEE Robotics and Automation Letters, 6:2822–2829, 2021.

- [4] Alberto Sabater, Luis Montesano, and Ana Cristina Murillo. Event transformer+. A multi-purpose solution for efficient event data processing. *ArXiv*, abs/2211.12222, 2022.
- [5] Mingyue Cui, Yuzhang Zhu, Yechang Liu, Yun-Meng Liu, Gang Chen, and Kai Huang. Dense depth-map estimation based on fusion of event camera and sparse LiDAR. *IEEE Transactions on Instrumentation and Measurement*, 71:1–11, 2022.

